2,9-DIOXABICYCLO[4.2.1]NONAN - DARSTELLUNG, MASSENSPEKTROSKOPIE UND UMLAGERUNG EINES NEUEN HETEROCYCLISCHEN SYSTEMS

Wittko Francke ^{*} und Wolfgang Reith Institut für Organische Chemie und Biochemie der Universität Hamburg Martin-Luther-King-Platz 6, D-2000 Hamburg 13, West-Germany

Abstract: Nine different methyl-substituted compounds of a new acetal system 5 are synthesized from 4-(5-methyl-2-furyl)alkanoles 1 and are rearranged to ketones 6; mass spectroscopic fragmentation patterns are described.

Die katalytische Hydrierung von Furylalkoholen <u>1</u> führt nicht nur zu den entsprechenden Tetrahydrofurylalkoholen sondern über die Dihydrofurane <u>2</u> auch zu den Spiroacetalen <u>4</u>¹⁾. Es gelang uns nun zu zeigen, daß für R = Alkyl über die Dihydrofurane <u>3</u> auch bicyclische Acetale des bisher nicht beschriebenen 2,9-Dioxabicyclo[4.2.1]nonan-Systems <u>5</u> entstehen, die sehr leicht in Tetrahydrofurylketone 6 umlagern.

Vertreter von 5 mit Alkylsubstituenten in Stellung 1 und/oder 3 können sich prinzipiell aus entsprechenden Oxoalkandiolen bilden. Da ähnliche Acetale als Insektenpheromone bekannt sind $^{2)}$, ist die Existenz von 5 und/oder 6 als Grundsystem von Naturstoffen nicht unwahrscheinlich. Synthese und massenspektroskopischer Zerfall dieser Systeme wurde von uns daher näher untersucht.

Die Alkohole <u>1</u> werden durch Reduktion der aus <u>7</u> und <u>8</u> erhältlichen Furylketone <u>9</u> synthetisiert und mit Pd/C hydriert ¹⁾. Die Acetale <u>5</u> werden von <u>4</u> durch präparative Gaschromatographie getrennt. Das Produktverhältnis <u>4:5</u> hängt vom Substitutionsgrad, -ort und der Umlagerungsgeschwindigkeit <u>5</u> \rightarrow <u>6</u> ab.

 $\frac{5}{2}$ und $\frac{6}{2}$ werden massenspektroskopisch und, soweit präparativ gaschromatographisch in die Isomeren trennbar, kernresonanzspektroskopisch charakterisiert. Die Struktur von $\frac{5a}{2}$ und $\frac{6a}{2}$ wird zusätzlich durch unabhängige Synthese aus 2-Methyl-2-(3-oxopropyl)-1,3-dioxolan ³⁾ und

	R^3	r ^{3'}	R^4	r ⁵	r ^{5'}	R^7	r ⁸
a	H	Н	Н	Н	Н	Н	Н
b	Н	Ме	Н	Н	Н	Н	Н
с	H	Н	Me	Н	Н	Н	Н
d	Н	Н	Н	Ме	Н	Н	Н
е	Н	Н	Н	Н	Н	Me	Н
f	Н	Н	Н	Н	Н	Н	Ме
â	Ме	Н	Н	Me	Me	Н	Н
h	Me	Me	Н	Me	Me	Н	н
i	Ме	Ме	Me	Me	Me	Н	Н

dem Lithiumsalz des Tetrahydropyranylpropargylethers mit anschließender Hydrierung und saurer Aufarbeitung gesichert.

Stellvertretend wird die Synthese von 5h und 6h beschrieben:

2-Methylfuran wird mit Mesityloxid unter sauren Bedingungen zu 4-Methyl-4-(5-methyl-2-furyl)--2-pentanon $(\underline{9h})^{4}$ umgesetzt. Ausbeute 71 %, Kp: $102^{\circ}/12 \text{ mm}$, n_{D}^{20} : 1.4703, ¹H-NMR (CDCl₃): $\delta =$ 1.4(s,6H) 1.7(s,3H) 2.2(s,3H) 2.6(s,2H)5.7(s,2H). Reaktion mit Methylmagnesiumiodid in Ether liefert 62 % 2,4-Dimethyl-4-(5-methyl-2-furyl)-2-pentanol (<u>1h</u>), Kp: $115^{\circ}/13 \text{ mm}$, n_{D}^{23} : 1.4749, ¹H-NMR (CDCl₃): $\delta = 1.0(s,3H)$ 1.3(s,6H) 1.8(s,2H) 2.2(s,3H) 5.8(s,2H). Hydrierung nach Lit.¹) liefert 44 % 1,3,3,5,5-Pentamethyl-2,9-dioxabicyclo[4.2.1]nonan (<u>5h</u>). Kp: $94-95^{\circ}/16 \text{ mm}$, ¹H-NMR (C₆D₆): $\delta = 0.60$ 1.20 1.22 1.55 und 1.62(je s, je CH₃) 1.13 (²J=14.8 Hz, ⁴J=1.4 Hz, 4'-H) 1.4-1.65 (m,4-H,7'-H und 8'-H) 1.78 (²J=11.8 Hz, ³J=6.6, 8.0 und 10.0 Hz, 7-H) 1.93 (²J=10.0 Hz, ³J=8.0 und 0.3 Hz, 8-H) 3.85 (³J=8.0 und 6.6 Hz, ⁴J=1.4 Hz, 6-H). <u>5h</u> lagert sich langsam, in saurer Lösung schnell in <u>6h</u> um. ¹H-NMR (C₆D₆): $\delta = 0.86$ 0.87 1.15 1.25 und 1.68 (je s, je CH₃) 1.45 (s,2H) 1.51-1.69 (m,2H) 2.17 ²J=15.6 Hz, ³J=8.8 und 7.2 Hz,1H) 2.46 (²J=15.6 Hz, ³J=8.6 und 6.2 Hz, 1H) 3.30 (³J=9.8 und 3.2 Hz, 1H); ¹³C-NMR (C₆D₆): $\delta =$ 206.16(s) 85.05(d) 77.44(s) 55.26(t)42.07(d) 41.34(t) 30.44(q) 29.54(t oder q) 29.44 (t oder q) 26.08(q)24.10(q) 23.12(q). MS (80 eV): 198(M⁺,1) 140(32) 98(35) 83(100) 43(45).

Das abgebildete Fragmentierungsschema faßt am Beispiel von <u>5h</u> die Bildung charakteristischer Bruchstücke in den Massenspektren zusammen. Mono-, di-, tri- und pentadeuterierte Acetale sind gemäß folgendem Syntheseschema zugänglich und liefern signifikante Massenverschiebungen in den Spektren:

u: LiAlD₄ v: H₂ w: D₂ x: CD₃MgI y: NaOD/D₂O/MeOD z: CH₃MgI

		м+		M-15	Α	В	с	D	Е	F	G	н
	a	142(5)	43(100)	127(1)	112(25)	71(45)	84 (17)	58(35)	54(20)			97(12)
	b	156 (1)	43(100)	141(2)	112(21)	85(12)	98(5)	58(20)	54(10)	56 (8)	41 (19)	97 (15)
	с	156(2)	43(100)	141(3)	126 (38)	85 (23)	98 (15)	58(12)	68 (53)	56 (15)	41 (22)	97 (29)
	d	156 (2)	43(100)	141(1)	126(7)	85(24)	98 (18)	58(11)	68(40)	56(33)	41 (31)	111(8)
	е	156(1)	43(100)	141(1)	126 (3)	71 (53)	98(5)	58(8)	68(21)			111(16)
	f	156(4)	43(100)	141(1)	126 (5)	71 (44)	84(5)	72(7)	68 (46)			111(7)
endo	g	184(1)	43 (100)	169(3)	140(10)	113(7)	126(7)	58(3)	82 (87)	84 (53)	69(70)	125(3)
exo	g	184(1)	43(100)	169(3)	140(3)	113(4)	126 (8)	58(3)	82(32)	84 (75)	69(100)	125(2)
	h	198(2)	43(63)	183(3)	140(23)	127(2)	140(23)	58(4)	82(100)	98(18)	83 (65)	125(6)
	i	212(2)	43 (100)	197(2)	154 (18)	141 (-)	154 (18)	58(9)	96 (86)	112(18)	97 (69)	125 (-)

Die wesentlich peakärmeren Massenspektren von <u>6</u> finden sich im Fragmentierungsverhalten von <u>5</u> wieder. Die Umlagerung ist offenbar auch durch Elektronenstoß induzierbar und führt zu den über Weg I gebildeten Ionen. Die Wasserstoffübertragung in A (Weg II) erfolgt aus der δ -Position unter Öffnung des Dreirings, da in d₅-<u>5g</u> m/z: 82 nicht, wie für eine McLafferty-Umlagerung aus der γ -Position zu erwarten, zu m/z: 84 sondern zu m/z: 83 wird. Die höher substituierten Vertreter zeigen neben dem Acyliumion m/z: 43, das fast immer zum Basision wird, sehr intensive Bruchstücke bei m/z: 69/84 (<u>5g</u>), 83/98 (<u>5h</u>) sowie 97/112 (<u>5i</u>). Durch Hochauflösung werden für die genannten Fragmente sauerstoffhaltige Ionen ausgeschlossen. Die deuterierten Verbindungen führen zur Formulierung des Zerfallswegs III, in dem - wie auch bei IV - ein Wasserstoffatom über eine Sechsring-Elektronenverschiebung übertragen wird. Die Bildung des Acyliumions sowie die Abspaltung einer Methylgruppe zu M-15⁺ sind über die Wege I-III möglich und im Zerfallsschema aus Gründen der Obersichtlichkeit nicht einge-zeichnet. Die Ionen sind tabellarisch zusammengestellt, die relativen Intensitäten in Klammern angegeben (außer bei <u>5g</u> sind die Spektren der exo- und endo-Isomeren nicht unterscheidbar).

Wir danken der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung.

Literatur:

- 1) W. Francke und W. Reith, Liebigs Ann. Chem. 1979, 1 und dort zitierte Literatur.
- 2) zur Übersicht siehe z.B.: W. Francke, Habilitationsschrift, Hamburg 1978 und
- J.M. Brand, Y.C. Young und R.M. Silverstein, Fortschr. Chem. Org. Naturstoffe 37, 1 (1979)
- 3) J.A. Bulat und H.J. Liu, Can. J. Chem. <u>54</u>, 3869 (1976).
- Y.K. Yurlev, N.S. Zefirov und A.A. Shteinman, J. Gen. Chem. USSR <u>33</u>, 1132 (1963) u. <u>30</u>, 3719 (1960).